Grad’s approximation for missing data in lattice Boltzmann simulations

S. S. Chikatamarla, S. Ansumali and I. V. Karlin
Editor-in-Chief
Prof. Denis Jérome
Lab. Physique des Solides - Université Paris-Sud
91405 Orsay - France
jerome@lps.u-psud.fr

Staff Editor: Yoanna Sobieski
Europhysics Letters, European Physical Society,
6 rue des Frères Lumière, BP 2136, 68060 Mulhouse Cedex, France

Editorial Director: Angela Oleandri
Production Editor: Paola Marangon
Publishers: EDP Sciences S.A., France - Società Italiana di Fisica, Italy

Europhysics Letters was launched more than fifteen years ago by the European Physical Society, the Société Française de Physique, the Società Italiana di Fisica and the Institute of Physics (UK) and owned now by 17 National Physical Societies/Institutes.

Europhysics Letters aims to publish short papers containing non-trivial new results, ideas, concepts, experimental methods, theoretical treatments, etc. which are of broad interest and importance to one or several sections of the physics community.

Europhysics letters provides a platform for scientists from all over the world to offer their results to an international readership.

Subscription 2006
24 issues - Vol. 73-76 (6 issues per vol.)
ISSN: 0295-5075 - ISSN electronic: 1286-4854

Payment:
☑ Check enclosed payable to EDP Sciences
☑ Please send me a pro forma invoice
☑ Credit card:
☑ Visa ☐ Mastercard ☐ American Express
Valid until: ________________
Card No: ________________
☑ Please send me a free sample copy

Institution/Library: ____________________________
Name: ____________________________
Position: ____________________________
Address: ____________________________
ZIP-Code: ____________________________
City: ____________________________
Country: ____________________________
E-mail: ____________________________
Signature: ____________________________
Grad’s approximation for missing data in lattice Boltzmann simulations

S. S. Chikatamarla1, S. Ansumali2 and I. V. Karlin1

1Aerothermochemistry and Combustion Systems Laboratory, ETH Zurich
CH-8092 Zürich, Switzerland
2School of Chemical and Biomedical Engineering, Nanyang Technological University
639798 Singapore

received 24 October 2005; accepted in final form 27 February 2006
published online 22 March 2006

PACS. 05.20.Dd – Kinetic theory.
PACS. 47.11.-j – Computational methods in fluid dynamics.

Abstract. – Engineering applications of computational fluid dynamics typically require specification of the boundary conditions at the inlet and at the outlet. It is known that the accuracy and stability of simulations is greatly influenced by the boundary conditions even at moderate Reynolds numbers. In this paper, we derive a new outflow boundary condition for the lattice Boltzmann simulations from non-equilibrium thermodynamics and Grad’s moment closure. The proposed boundary condition is validated with a three-dimensional simulation of a backward facing step flow. Results demonstrate that the new outlet condition significantly extends the simulation capability of the lattice Boltzmann method.

In recent years, the lattice Boltzmann method (LBM) [1–8] has drawn considerable attention as an efficient simulation method for complex flows (for a general reference to LBM see [9–11]). The essence of LBM, as inherited from its predecessor, the lattice gas automata [12], is a simple stream-and-collide dynamics on a lattice. The links of the lattice are discrete velocities while the dynamic variables are populations of the links. Although the field of applications of LBM has increased considerably, there remain outstanding issues (stability, boundary conditions, grid-refinement, etc.) which so far hindered a wider acceptance of LBM for computational fluid dynamics applications. One of these issues, namely numerical stability of simulations of flows at large Reynolds numbers, has been solved in the framework of the entropic formulation of LBM [4,5,13]. This solution was essentially based on the choice of time step that does not violate the entropy growth condition (a physically relevant condition prescribed by the second law of thermodynamics). Furthermore, the boundary conditions at solid walls were derived from the continuous kinetic theory [14]. However, other major difficulties that are not related to the sub-grid instability at high Reynolds numbers, still persist. Such difficulties are here referred to as “missing data”, and are typical in situations where off-lattice structures are present (open boundary conditions, curved solid wall boundaries, grid refinement, etc.). It is common to these problems that populations of the links at certain nodes become unavailable. It is best to illustrate this with an example.
A typical problem of this kind is the specification of the outlet boundary condition in duct-like flows with large aspect ratio. Such flows are most common in engineering and medical applications such as wind tunnels, blood vessels, etc. [15, 16]. In fig. 1, we show a situation at the outlet node. Since there are no lattice nodes beyond the outlet, populations of the three discrete velocities pointing into the fluid are not known and need to be fixed by additional considerations. Because specification of pressure at the outlet has no significance in long pipes, one relies on interpolation schemes (see, e.g., [17]) lacking physical intuitions. Interpolation often becomes a major source of instability in the simulations.

In this letter we derive and implement a new outlet boundary condition for the lattice Boltzmann simulations. Our construction is based on the idea of a low-dimensional submanifold in the space of populations which contains most of the dynamics (slow invariant manifold [18–20]). The main assumption is that this manifold is well approximated by (an analog of) Grad’s distribution functions used in the kinetic theory of gases. The Grad distribution is used for extrapolating the missing populations with the resulting outlet condition being local in space, and is thus easy to implement. We report a three-dimensional lattice Boltzmann flow simulation over a step (so-called backwards facing step problem) with this new outlet boundary condition. Results are found to be in good agreement with spectral method and experimental data over a range of Reynolds numbers.

We consider the simplest setting of the lattice Boltzmann equation. Let c_i be the links of a regular lattice, $i = 1, \ldots, n_d$, and the populations $f_i(x, t)$ at the location x and time t obey the kinetic equation

$$\partial_t f_i + c_i \partial_x f_i = Q_i,$$

(1)

where $\partial_t = \partial/\partial t$ and $\partial_x = \partial/\partial x$ are dimensionless time and space derivatives, summation convention is assumed, and the relaxation term is in the Bhatnagar-Gross-Krook (BGK) form [21],

$$Q_i = -\frac{1}{\tau}(f_i - f_i^{\text{eq}}(\rho, j)).$$

(2)

Here $\tau > 0$ is the dimensionless relaxation time, and the equilibrium $f_i^{\text{eq}}(\rho, j)$ is a function of the locally conserved fields (density ρ and momentum j), tailored in such a way as to reconstruct the Navier-Stokes equation in the hydrodynamic limit of the model (1) when $\tau \to 0$. Below we use a specific three-dimensional velocity set with $n_d = 15$ (so-called D3Q15...
model [2], with
\[f_i^\text{eq}(\rho, j) = W_i \left[\rho + \frac{j_i c_{i\alpha} c_{i\beta}}{c_s^2} + \frac{1}{2c_s^2} j_{i\alpha} j_{i\beta} \right] . \]
(3)

Here \(W_i > 0 \) are weights specified for the given velocity set, and \(c_s = 1/\sqrt{3} \) is the speed of sound. The kinematic viscosity in the Navier-Stokes equation recovered in the limit \(\tau \ll 1 \) is \(\nu = \tau c_s^2 \). Note that equilibrium (3) is the approximate (accurate to the order \(j^2 \)) solution to the conditional minimization problem of the entropy function \(H \),

\[H = \sum_{i=1}^{n_d} f_i \ln \left(\frac{f_i}{W_i} \right) \rightarrow \min, \quad \sum_{i=1}^{n_d} \{1, c_i\} f_i^\text{eq} = \{\rho, j\} . \]
(4)

The lattice Boltzmann method [1–3,6] is the second-order accurate implicit scheme for the kinetic equation (1). Let us recall the derivation here. After integrating (1) over the time \(\delta t \), and applying trapezoidal rule in order to evaluate the collision term (second-order accuracy in \(\delta t \)), we get

\[f_i(x + c_i \delta t, t + \delta t) - f_i(x, t) = \frac{\delta t}{2} \left(Q_i(f(x, t)) + Q_i(f(x + c_i \delta t, t + \delta t)) \right) + \text{Err}(\delta t), \]
(5)

where the error term comes from the evaluation of the collision integral, and is of the order

\[\text{Err}(\delta t) \sim \frac{1}{\tau} \delta t^3. \]
(6)

Using in (5) the map [22],

\[f_i \rightarrow g_i = f_i - \frac{\delta t}{2} Q_i(f), \]
(7)

we derive the discrete-time scheme for (1):

\[g_i(x + c_i \delta t, t + \delta t) = g_i(x, t) + \frac{2\delta t}{2\tau + \delta t} \left[g_i^\text{eq}(x, t) - g_i(x, t) \right] . \]
(8)

Furthermore, fixing the grid points in such a way that if \(x \) is a grid point then also \(x \pm c_i \delta t \) are the grid points, eq. (8) becomes the lattice Bhatnagar-Gross-Krooks scheme (LBGK). Note that the implicit second-order scheme for the populations \(f_i \) (8) can be interpreted as the explicit first-order scheme for the variables \(g_i \) (7) obtained from a kinetic equation of the form (1) with a renormalized relaxation time \(\tau' = \tau + (\delta t)/2 \). We note in passing that a nonlinearly stable entropic version of the scheme (8) can be written for the populations \(f_i \) rather than for the functions \(g_i \), where the factor \((2\delta t)/(2\tau + \delta t) \) is replaced by \((\alpha \delta t)/(2\tau + \delta t) \), and \(\alpha \) is the solution to the entropy estimate, \(H(f) = H(f + \alpha Q) \), with \(\alpha \rightarrow 2 \) in the hydrodynamic limit (see, e.g., eq. (9) in ref. [6]).

One interesting implication of this derivation of the lattice Boltzmann scheme from the kinetic equation (1) deserves to be mentioned. Since the kinetic equation is singularly perturbed (\(\tau \ll 1 \)), the error term gives a vanishing contribution to the hydrodynamic (Navier-Stokes) equations if \(\text{Err}(\delta t) \sim 1 \). This estimate was first used in [23] in order to derive a sub-grid model from kinetic theory. Here we use it in a different way in order to establish a resolution requirement. With this estimate, we obtain in (6): \(\delta t \lesssim \tau^{1/3} \). Now, using the standard relation \(\text{Re} = \text{Ma}/\text{Kn} \), where \(\text{Re} \), \(\text{Ma} \) and \(\text{Kn} \) are Reynolds, Mach and Knudsen numbers, the latter estimate can be recast into a grid resolution requirement. Indeed, since \(\text{Kn} \sim \tau \), and
$\delta t \sim \delta x \sim N^{-1}$, where $N = L/\delta x$ is the number of grid points along the characteristic length L in the definition of Reynolds number $Re = UL/\nu$, we find that the error terms do not spoil the Navier-Stokes equation on the time step of the order of δt if $Re \lesssim N^3 Ma$. Finally, the Navier-Stokes equation is resolved on a flow time scale, $T \sim N\delta t$, if

$$N \gtrsim \sqrt{\frac{Re}{Ma}}. \quad (9)$$

For a fixed number of grid points N, (9) estimates the order of magnitude of the Reynolds number up to which the simulation is resolved (that is, the second-order scheme (8) reconstructs the Navier-Stokes equations exactly). The resolution estimate (9) is pertinent to the kinetic scheme, and is flow independent. It should not be confused with other (flow-dependent) definitions of resolution in computational fluid dynamics, for example, with those based on a characteristic length of fully developed turbulent flows (Kolmogorov’s length scale). The estimate (9) simply tells whether the scheme (8) reconstructs the Navier-Stokes equations, or the reconstructed hydrodynamic equations have a feature of a sub-grid model.

Coming back to the problem of the outflow boundary condition, we introduce (an analog of) Grad’s moment approximation for the populations. We remind that the classical Grad’s distribution functions [24] were obtained as a truncated expansion in Hermite velocity polynomials of the distribution function around the local Maxwellian. Grad’s distributions are parameterized by the values of relevant moments which include, besides the locally conserved fields, also those which are supposed to vary slower than the rest. These are the stress tensor and the energy flux in the original setting of Grad. Later studies revealed important relations of Grad’s distributions to quasi-equilibrium (or maximum entropy) approximations, and suggested extensions for various other macroscopic variables (not obligatory moments) [20,25]. In the context of the lattice Boltzmann method, the Grad approximation was discussed in [3,14]. In the athermal case under consideration, we choose the relevant variables as the locally conserved fields, ρ and j, and the pressure tensor P,

$$P_{\alpha\beta} = \sum_{i=1}^{n_d} f_i c_{i\alpha} c_{i\beta}. \quad (10)$$

Grad’s approximation for the populations can be derived by standard techniques (see, e.g., [20,25]), and we write here the final result:

$$f^*_i(\rho, j, P) = W_i \left[\rho + \frac{\dot{j}_\alpha c_{i\alpha}}{c^2} + \frac{1}{2c^4} \left(P_{\alpha\beta} - \rho c^2 \delta_{\alpha\beta} \right) \left(c_{i\alpha} c_{i\beta} - c^2 \delta_{\alpha\beta} \right) \right]. \quad (11)$$

Grad’s (non-equilibrium) populations (11) span a sub-manifold in the phase space of the kinetic equation (1), parameterized by the values of the density, momentum and pressure tensor. The main assumption in using Grad’s approximations is that the sub-manifold (11) approximates well the slow manifold of the dynamic system (8). While in most of the cases of applications of Grad’s approximation this indeed remains an assumption, for some lattice Boltzmann models, this was recently verified affirmatively in a simulation of the lid-driven cavity flow [26].

With this assumption, we impose the outlet condition (see fig. 1) by the following rule:

1) At time step n, the density ρ, the momentum j, and the pressure tensor P (10) are computed at the outlet nodes x_{out}.
2) Grad’s populations (11),

\[f_i^*(\rho(x_{out}),j(x_{out}),P(x_{out})) \]

are computed.

3) At time step \(n + 1 \), missing populations (see fig. 1) at the outlet nodes are assigned the values (12).

The three-dimensional backwards-facing step flow was used to validate the outlet boundary condition. The standard D3Q15 lattice Boltzmann model with the polynomial equilibrium (3) was used. Geometry of the setup was chosen in such a way as to mimic the experiment of Armaly et al. [27]: The channel length (\(X \)) was 20S, where \(S \) is the backwards facing step height, the channel width (\(Y \)) was 2S. The step height was \(S = 10 \) (lattice units) while the step length was 2S. The ratio of the span width (\(Z \)) to the step height was equal to 36 : 1 (that is, the span width was 36S lattice units). The total number of grid points was about \(1.5 \times 10^6 \). Kinetic boundary conditions [14] were applied on the wall nodes. The inflow was a fully developed velocity profile in a duct flow (simulated separately in the duct with the dimension 15S \times S \times 36S). The inflow velocity maximum ranged between \(10^{-2} \) and \(4 \times 10^{-2} \), while the kinematic viscosity was fixed at \(\nu = 10^{-3} \). The outlet condition was applied both in the backwards-facing step channel and in the auxiliary duct simulations. All simulations were done on a single-processor facility (PC), a single run time ranged between one and several hours depending on the Reynolds number, \(Re = (2US)/\nu \), where \(U \) is the cross-section averaged inlet velocity. According to (9), the kinetically resolved maximal Reynolds number is \(Re_{\text{max}} \sim 10. \)

Before reporting the results, we need to point out that, for example, the same three-dimensional lattice Boltzmann model with the outlet boundary conditions based on a simple second-order interpolation formula for the missing populations (see, e.g., [17]) failed at Reynolds number \(Re < 50 \). The reason for such a poor performance, as we mentioned it already, is the errors which start at the outlet and propagate upstream.

The range of Reynolds number covered in our simulation with the new outlet was \(100 < Re < 392 \) (that is essentially in the unresolved regime in the sense of (9), which is typical of most of the lattice Boltzmann simulations). In fig. 2, snapshots of the velocity on the mid-plane at \(Re = 270 \) are shown in the full computation domain, including the outlet. It is visible in fig. 2 that the velocity profile stays smooth during the whole simulation.

We have tested the basic assumption about the validity of Grad’s approximation (11) by measuring the average deviation of the populations from the Grad’s distribution,

\[\varsigma(x,t) = \frac{1}{n_d} \sum_{i=1}^{n_d} \frac{|f_i(x,t) - f_i^*(x,t)|}{f_i(x,t)} \times 100\%. \]

Results are presented in fig. 2. As expected, most of the deviations are around the inlet and the regions of higher gradients. Closer to the outlet where we enforce the Grad distribution (11) by the present outflow condition, deviations are practically zero. The overall quality of Grad’s approximation is extremely good, even at the inflow the maximum deviation is less than 0.15% during the whole simulation. Thus, the basic assumption about the validity of Grad’s approximation at the outlet appears to be correct.

In fig. 3, the primary flow reattachment length (the distance at which the velocity field on the bottom wall becomes directed towards the outlet) is compared with the results of the simulations of the incompressible Navier-Stokes equation by various numerical techniques [28,29],
Fig. 2 – Left column: snapshots of the velocity field on the mid-plane at $Re = 270$ at 9×10^3, 18×10^3 and 40×10^3 time steps in lattice units (from top to bottom). Right column: corresponding percentage deviation ς (13) of populations’s from Grad’s approximation (11). Gray scale: bright, larger deviation; dark, smaller deviation (see text).

with the recent two-dimensional lattice Boltzmann simulation on a non-uniform grid [17], as well as with the experimental data of Armaly et al. [27], and was found to be in excellent agreement.

In conclusion, we derived a new outlet condition for lattice Boltzmann simulations of hydrodynamic problems. The derivation is based on the physically intuitive picture that Grad’s

Fig. 3 – Primary reattachment length X_1 normalized by the step height S. Comparison of the present simulation with the experiment of Armaly et al. [27], and simulations of Kaiktsis et al. [28], Kim and Moin [29], and Ubertini and Succi [17].
approximation contains most of the dynamics of the kinetic model. Validity of Grad's approximation is explicitly verified in the simulation. Similar considerations should be applicable in a variety of other problems where one faces off-grid structures such as grid refinement and curved boundary.

* * *

IVK was supported by the BFE Project 100862. SSC was supported by the ETH grant 0-20280-05.

REFERENCES